The role of death-associated protein kinase (DAPK) in endothelial apoptosis under fluid shear stress.

نویسندگان

  • Keith Rennier
  • Julie Y Ji
چکیده

Endothelial cells are the interface between hemodynamic fluid flow and vascular tissue contact. They actively translate physical and chemical stimuli into intracellular signaling cascades which in turn regulate cell function, and endothelial dysfunction leads to inflammation and diseased conditions. For example, atherosclerosis, a chronic vascular disease, favorably develops in regions of disturbed fluid flow and low shear stress. Apoptosis, or programmed cell death, must be properly regulated to maintain homeostasis in the vascular wall. The loss of apoptosis control, as seen in low shear stress regions, is implicated in various diseases such as atherosclerosis and cancer. Death-associated protein kinase (DAPK) is a pro-apoptotic regulator for various cell types that is localized in the cell cytoskeleton and regulates changes in cytoplasm associated with apoptosis. Yet its role in endothelial cells remains unclear. Laminar shear stress inhibits cytokine, oxidative stress, and serum starvation induced endothelial apoptosis, while extended shearing elicit structural changes and cell alignment. We hypothesize that DAPK potentially plays a role in attenuating endothelial apoptosis in response to shear stress. We found that shear stress regulates DAPK expression and apoptotic activity in endothelial cells. In fact, shear stress alone induces DAPK and apoptosis, but has the opposite effect in the presence of apoptotic triggers such as tissue necrosis factor α (TNFα). This review summarizes mechanisms of endothelial mechanotransduction and apoptosis, and explores the potential of DAPK as a novel signaling pathway involved in mediating protective effects of shear stress on the vasculature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylation and mRNA expression levels of P15, death-associated protein kinase, and suppressor of cytokine signaling-1 genes in multiple myeloma

Objective(s): The aim of this study was to investigate the methylation status and mRNA expression levels of P15, death-associated protein kinase (DAPK), and suppressor of cytokine signaling-1 (SOCS1) genes in multiple myeloma (MM). Materials and Methods: The bone marrow samples of 54 MM patients were collected and the methylation status of the P15, DAPK, and SOCS1 gene promoter regions was dete...

متن کامل

Fluid shear stress stimulates phosphorylation of Akt in human endothelial cells: involvement in suppression of apoptosis.

Fluid shear stress alters the morphology and function of the endothelium by activating several kinases. Furthermore, shear stress potently inhibits apoptosis of endothelial cells. Since activation of Akt kinase has been shown to prevent cell death, we investigated the effects of shear stress on Akt phosphorylation. To test the hypothesis that shear stress interacts with the Akt kinase pathway, ...

متن کامل

Structural insight into nucleotide recognition by human death-associated protein kinase

Death-associated protein kinase (DAPK) is a member of the Ca(2+)/calmodulin-regulated family of serine/threonine protein kinases. The role of the kinase activity of DAPK in eukaryotic cell apoptosis and the ability of bioavailable DAPK inhibitors to rescue neuronal death after brain injury have made it a drug-discovery target for neurodegenerative disorders. In order to understand the recogniti...

متن کامل

Suppressed protein expression of the death-associated protein kinase enhances 5-fluorouracil-sensitivity but not etoposide-sensitivity in human endometrial adenocarcinoma cells.

Targeted knockdown of the death-associated protein kinase (DAPK) expression in the endometrial adenocarcinoma HHUA cells reportedly induces cell death by enhancing the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in an autocrine/paracrine manner. This suggests that endogenous DAPK is a potential candidate for a molecularly targeted anticancer therapy for pa...

متن کامل

Role of shear-stress-induced VEGF expression in endothelial cell survival.

Vascular endothelial growth factor (VEGF) plays a crucial role in developmental and pathological angiogenesis. Expression of VEGF in quiescent adult tissue suggests a potential role in the maintenance of mature blood vessels. We demonstrate, using a Vegf-lacZ reporter mouse model, that VEGF is expressed by arterial but not by venous or capillary endothelial cells (ECs) in vivo. Using an in vitr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Life sciences

دوره 93 5-6  شماره 

صفحات  -

تاریخ انتشار 2013